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FOREWORD 

This report i s  submitted by Rocketdyne t o  the  National  Aeronautics and Space 
Administration  Office of Advanced Research and Technology as  the f ina l  
technical  report of the research performed under Contract NAS7-470 during 

the  period 13 June 1966 through 12 May 1968. Technical manager  of this 
contract is D r .  R. H . Wilson, Chief, Applied  Mathematics  Branch, NASA 

Headquarters, Washington, D .C . 
ABSTRACT 

A multistep  predictor-corrector method for the nwnerical solution of ordinary 
differential  equations is developed. The difference  equations employed are 
generalizations,  for  the  case of variable mesh spacing, of previous formulas 
requiring  fixed  step  size. In addition  to retaining the high local accuracy 
and  convergence properties of the  earlier methods, the  varlable mesh method 

i s  developed in a form conducive t o  the  generation of effective  cri teria  for 
the  selection of subsequent step sizes in the  step by step  solution of differ-  
ential  equaticas. These cr i ter ia   are  based on considerations of truncation 
error, convergence  of corrector  iterations, and an extensive  treatment of 
relative numerical s tabi l i ty .  The algorithm has been tested  extensively and 

compared with other methods. The results of the comparison favor  the new 
method. 

This report also discusses an extension of the variable mesh multistep method 
for  the,case of stiff equations and application of the variable mesh approach 
t o  partial dif  ferentlal  equations. 
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VARIABIZ MESH ME!tEODG FOR 

DlFFERENTIAL EQUATIONS 

1. INTRODUCTION. A great  deal of research  effort has been directed 
towad  the numerical solution of first order  nonlinear  ordinary  differen- 
tial equations because of the  practical Importance  of such problems . The 
most widely used numerical methods that have been developed for  these pro- 
blems provide approximate values of the solution a t  discrete  points accord- 
ing t o  a  stepwise computation beginning a t  an initial point  for which the 
solution is known. These  methods are called one-step methods if the  cal- 
culation of the solution a t  a given  point depends explicitly on values of 
the solution and one or more  of i t s  derivatives a t  only one previous  point. 
Multistep methods require values a t  two or more previous points. One-step 
(Runge-Kutta) methods are very  convenient because the  step increments can 
be changed readily from step to  step as desired and because the solution 
in the initial steps is calculated with the sane formulas as used in sub- 
sequent steps.  Multistep methods, although less  convenient, are usually 
more efficient because, by lnaking use of the  calculations of  more than one 
previous  step, less  computer time is required t o  achieve the same accuracy 
as achieved with a one-step method. 

The research  reported  here w a s  directed toward the development  and testing 
09 variable mesh multistep methods which not only preserve  the  efficiency 
due t o  the multistep structure  but improve this efficiency by permitting as 
m u c h  freedom in the  variation of the  step increments as is afforded by one- 
step methods.  Care was taken t o  formulate the basic  difference  equations 
ia a manner conducive t o  the development  of effective  criteria  for  selecting 
the variable mesh increments as the calculation  progresses. In the follow- 
ing pages the  basic  algorithm is described and the analysis and practical 
considerations  justifying  the mesh cr i ter ia   are  presented. The mesh cr i te r ia  
were subjected t o  extensive numerical testing, and in addition, the algorithm 
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was captbred w i t h  known methods in the numerical solution of selected dlf-  

femntial  equations . The results of th i s  and other  experimental work are 
sunrmarized in later  sections . 
me problem  of s t a r t i n g  the caqputation, that is, the requirement of can- 

put- the  solution a t  the first few points by a separate  technique in 
order t o  initialize  multistep methods, i s  not emphasized here for two 
reasons . First, because of the variable mesh formuhtion, the calculation 
is only i n i t i a l i z e d  once and never has t o  be restarted as would  be required 
in changing the step  size while using a fixed  step size, multistep method. 

In the second place, fairly  general starting procedures are  readily avail- 
able for  incorporation w i t h  the variable mesh method because the step in- 

crements used in the starting procedure can be smaller than  those used in 

the subsequent calculations. For  example, the start- procedure outlined 
in [11 for the variable mesh method consists of simply using the one-step 
Adam-Bashforth/Adams-Moulton formulas for  the f i rs t  step, the two-step 
formulas for  the second step, and the  three-step formulas for  third step. 
The same step  size is used for each of these three initial steps, and it 
is chosen small enough to  yield the desired  accuracy a t  the f i rs t  polnt . 
There is l i t t l e  danger of exceeding this error a t  the second and third 

points  since  higher  order formulas are used. 

In addition t o  the basic variable mesh multistep method for  ordinary dif-  

ferential  equatiaas, this report  discusses an extension of the method for 
stiff equations and application of the variable mesh approach t o  partis1 
differential  equations . 
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2 VARIABLE MESH MULTISTEP FORMULAS. The initial value problems 
considered are represented by differential  equations of the form 

with initial condition y(xo) = yo. Equation (1) represents a single 
differential  equation; however sane special  considerations  required 
for  systems of d i f f e r e n t i a  equation6 w i l l  also be given in the sequel. 
It is assumed a t  the  outset that F is continuous and sat isf ies  the 
Lipschitz  condition that guarantees the existence of a unique, continu- 
ou8 and differentiable  solution [2, p. 15 1. The continuity of higher 
derivatives w i l l  be required later in the discussion of truncation 
error. 

Here h  denotes  the  current  step s ize ,  x - x and is pemit ted  to  

vary with n. The coefficients ai and bi are  also variable and it 
w i l l  be convenient l a t e r   t o  express them in terms of mesh parameters CY, 
8, and Y defined by 

w l  n' 

and 
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For the  case of fixed  step  size, a, B, and y have the constant vslues 
1, 2, and 3, respectively.  Henrici [Z, pp. 218, 2243 has defined condi- 
tiom of consistency alld stability  for  fixed  h and has shown that they 
are  necessary and also sufficient, when taken  together,  for convergence 

of Yn t o  Y(XJ as 
root of the  equation 

4 3 P - a O p  - 

exceed  one in m o d u l u s  
consistency  condition 

h 4 0 . The stability  condition  requires  that no 

2 alp - a Z p  - a3 = 0 (4) 

and roots of unit m o d u l u s  must be slqple. The 
requires that equation (2) be exact if  y(x) is 

either constant or  l inear.  

An analogous equivalence theorem holds i n  the variable mesh case. It 
follows innnedlately that  the  stabil i ty and consistency  conditions are 
necessary for convergence i n  the  variable mesh case  because they are 
necessary in the  special case of 'fixed mesh. Henrici's proof of suffi- 
ciency has been generalized by the author to  account for  the case of 
variable step size,  but is omitted here because of its length. For this 

case the two conditions  are  required t o  hold for  each different  step  size 
used in the integration. 

The val3dity of the  generalized  equivalence theorem is not  restricted t o  
difference  equations with  only the number of terms actually shown in (2)  . 
However since we w i l l  restrict  the  present  discussion  to  fourth oxder 
methods--that is, methods w i t h  error tern proportional  to  the  fifth power 
of h--the  terms sham are adequate. The optbun  order  to use in a given 
applicaticm depellds  heavil;y on the degree of accuracy  desired,  but fourth 
order is a reasonable comprmise for medim range accuracy-say two t o  
six significant  figures. W i t h  fixed step size it is often  desirable  to 
vary the  order  within a given  application in  order t o  malntain a desired 
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accuracy. The variable mesh  procedure, on  the  other hand, haa  the  ad- 
vantage of achieving  the  same  objective  without  switching  from formulas 

of  one  order to those of another. 

Both explicit  (predictor) and implicit  (corrector)  variable mesh  formulas 
are  used.  The  explicit  equation  has  b 0 while the  implicit usually 
can  be  solved  by  iteration. The coefficients  in (2) for the  two  formulas 
are determined  in  part by requiring satisfaction of  the stability and 
consistency  conditions. By requiring  exactness for F(x,y) 2 0, the  rela- 
tion, a + a + a + a = 1, is  imposed,  from which it  follows  that  one 
root of  equation (4) is  unity. The  other three  roots  ("parasitic"i  arising 
because  a  fourth  order  difference  equation  is  used  in  place o f  a first 
order  differential equation, are all zero if we select  a = 1, al - - a2 - 
a3 = 0. 

-1 

0 1 2 3  

0 
- 

The  consistency  condition  is  satisfied by  the additional  requirement 
of exactness for y = x-x which  yields,  for the  predictor, bo + bl + 
b + b3 = 1. Combining this  with the  requirements of exactness for 
1 
~(x-x,)'; f(x-~~)~, ~ ( x - x ~ ) ~ ,  the bi of the  predictor, 

n' 
2 

are  determined  recursively  as follows: 

2 (2+3a) (@+(X) + 3(1-2a 2 ) b -  3 -  lW(Y-a) (8-Y)  

b 1 = - "(l+2yb3+2fi2) 1 2br 
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S i m i l a r l y ,  a c o r r e c t o r  o f  t h e  form 

i s  found  wi th   coef f ic ien ts  

d o = 1  .- - d2(1+8) - dl(l+or) 
2 

d -1 = 1 - d 2 - d l - d o  (8) 

For the   spec ia l   ca se  of f i x e d   s t e p   s i z e ,   t h e  above   pred ic tor   and   cor rec tor  

formulas  reduce  to  the  widely  accepted  Adams-Bashforth  and Adams-Moult.on 

formulas   respec t ive ly .   In   th i s   connec t ion  one i s  reminded of the  formulas  

presented  by  Nordsieck  in  a paper   which ,   l ike   the   p resent   pap .e r ,   a l so  em- 

phasizes   the  advantages of   changing  s tep  s ize  [31. Although  the  a lgori thm 

of  Nordsieck i s  s u b s t a n t . i a l l y   d i f f e r e n t  from tha t   p re sen ted   he re ,  i t  i s  

similar i n   t h e   s e n s e   t h a t   h i s   b a s i c   i n t e g r a t i o n   f o r m u l a s  are equiva len t  

t o   t h e  Adams formulas.  However,  t.he  formulat.ion  used by Nordsieclc  appears 

t o   b e  much less conducive t o   t h e  development  of e f f e c t i v e  mesh s e l e c t i o n  

c r i t e r i a   t h a n  i s  the  formulat ion  presented  above.   This   c la im i s  corroborated 

by  evidence  obtained when both   methods ,   comple te   wi th   the i r   respec t ive  

recommended mesh s e l e c t i o n   c r i t e r i a ,  were a p p l i e d   t o   s e l e c t e d   d i f f e r e n t i a l  

equat ions.   (This  work i s  d e s c r i b e d   i n  more d e t a i l  i n  a l a t e r   s e c t i o n .  ) 
This deficiency of the lkrdsieck method m y  result fm h i s  asswtion 

of "fixed point" qperatlons rather than the more caunonly used "floating 
Pobt," a8 also suggested by Lewis and Stovall in a paper which appeared 
too late for  incorporation in the work reported here [k]. 
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Assuming continuous  higher  derivatives of F(x, y), it is evident  upon  com- 
paring  equation ( 5 )  with an appropriate Taylor  Series representation for 

y(xn  +1 ) that  the  truncation error in ( 5 )  can be represented as 

wherc  the  coefficient P n depends on 01, 6, and y .  If we  consider the 
residual  error  resulting  from  the  application of ( 5 )  to  the  polynomial 
(x-x,)~, we find  that 

Similarly, if the  error  in ( 7 )  is  taken  in  the form 

h' 6 
n 5 .  c I Y,' + O(h ), 

Cn is found to be given by 

Various alternative modes of  utilization of  the predictor and corrector 
formulas  are  available  in  practice. For  example, the  predictor  can be 

used without  employing  the  corrector  at all. On  the other hand, if the 
corrector  is used, it  usually  is  used  iteratively,with  the  predictor 

providing  the first guess. Qualitatively, some of  the  arguments for and 
against  the various alternatives are as follows: 
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a )  Nmber of  derivative  evaluations per step. The "predictor-only" 
mode requires  only one evaluation  per  step. If one correction 
is cmplayed, a second evaluation is usually made af ter   the  cor- 
rect ion  to  enhance numerical stabi l i ty .  & general, n cor- 
rections  require either n or pc1 derivative  evaluations, 
depending on whether a final evaluation is or I s  not carried out . 
Evaluations of camplicated derivative  functiops  frequently re- 
quire a prednminnnt portion of the t o t a l  computer time. 

b)  Truncation error. Implementation of the  corrector reduces the 
t runa t ion   e r ror  ( I t  is a  simple exercise  to show that 
Icnl IPnl .I 

c) Numerical s tab i l i ty .  W i t h  regard t o  both absolute and relative 
s tabi l i ty ,  the regions  of  stability became less restr ic t ive as 
the nwnber of cometion-evaluation  iterations b increased. 
Incidentally, these regions became more rest r ic t ive as order is 
increased . 

d) Availability of mesh cr i ter ia .  More effective procedures for 
automatically  selecting the mesh increments can be developed 
for  same modes than for others. This consideration  favors  a 
predictor-corrector mode w i t h  at least two applications of the 
corrector. 

An enpirid program wss carried out whereby the vsrious modes were can- 
pared in the actual numerical solution of selected differential equations. 
The mesh increments were selected in a mmner such that  the t o t a l  nuuber 
of derivative  evaluations was the same for  each mode. This work is not 
reported in detail here since an even more extensive testing progrsln of 
a simllar nature for the case of fixed step size  wa8 carried  out d re- 
ported in detail by Hull d CreePLer [SI. There conclusions, fivorlng the 
mode p-d-c-d-c, are in agreement with those reached in the present study. 
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(Here p denotes predictor, d derivntive  evaluation, and c  corrector.) 
Consequently, the discussion in the  remalnlng sections w i l l  be directed 
primsrily toward this mode. 

3 . NUMERICAL STABILITY FQR SRGLF, D-IAL EQUATIONS. ’phs con- 
dition of stabUity referred to in the previous section does not guarantee 
nuuerioal stability for h > 0. A more appropriate analysis of n w r i & l  
stability is presented here. 

First  note  that  each  corrector  iteration  is  performed  according  to  the 
equation 

where the superscript k denotea  the kth iteration.  Subtracting  thie 
equation from (7) and employing  the  mean  value  theorem gives 

where 

x = ,(a”) ay x=x 9 

y,$+1 

f o r  aome q between y and c ~ + ~ .  (k ) Thus the  following  condition ia re- n +1 
quired for convergence  of  the  corrector  iteratione: 
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It is asswned that condition (&l) is satisfied In the following discussion, 
snd in fact  this  condition w i l l  be  used in the mesh selection procedures 
described in the next.  section. 

It is  also assmed for  the purpose of the  nunerioal  stability  analysis 
that 1 is constant,  a B~XU~ELN~ assumption in the literature for fixed 

step s ize .  By appropriate choice of h a t  each step, A can be  made 
nearly  constant in the  variable mesh case. In practice, however, this 
a s s q t i o n  is usually violated with fixed mesh methds, even when proce- 
dures t o  frequently double or  halve the step size  are inclded. Further- 
more when nmerical   s tabi l i ty  is the cCmtrOUing; factor, it is good policy 
t o  keep h as large a6 possible  without  forcing A beyond its limitation 
imposed by the threat of instabil i ty.  llhus in this  case, the mesh incre- 

ments used are actually  considerably suboptimal a t  most steps with fixed 
mesh nethods . On the  other hand, the  variable mesh feature obviously 
allows much better optimization when the  integration is Stabil i ty llmited. 
O f  course when it i s  not  stabil i ty limited, variations in A are 
incansequential 

I n i t i a l l y   l e t  u s  cons ide r   t he  mode which  employs a p r e d i c t i o n  and k cor- 

r ec t ions   w i th  a d e r i v a t i v e   e v a l u a t i o n   a f t e r   e a c h   p r e d i c t i o n  and c o r r e c t i o n .  

Let f denote   the  propagated  error ,   y(xn)  - c t ’ .  Then it  can be shown 

t h a t  c s a t i s f i e s   t h e   d i f f e r e n c e   e q u a t i o n  
n 

n 

. . .. . . . 
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e x c e p t   f o r   t h e   f i f t h   o r d e r   t r u n c a t i o n   e r r o r .  The e f f e c t  of t h e   p r e d i c t o r  

on the   propngated  error   decreaaea  with  increasing k because   the   fac tor  

(xd-l)lc mult ip l ieo   the   b i   in   the   above   equat ion .  In the  limit the   cor -  

rec tor   a lone   de te rmines   the   e r ror   p ropagat ion ,   the   equat ion   be ing   g iven  

by 

In p r a c t i c e ,  when the  mesh increments   are   emall  enough to   p rov ide  a 

reasonably small t r u n c a t i o n   e r r o r ,   t h e   c o r r e c t o r   i t e r a t i o n s  beyond the  

eecond a r e   e s s e n t i a l l y   r e d u n d a n t .  Hence the  above d i f fe rence   equat ion  

fo r   t he   p ropaga ted   e r ro r   i n   t he   co r rec to r   a lone  is adequately  representative,  for 
pmCti& puSposes, Of. the error propagation for the rec-nded  mode, p-d-c-d-c. 

I f   t he   d i f f e rence   equa t ion   (12 )   has   cons t an t   coe f f i c i en t s ,  i t s  s o l u t i o n  

en can  be  expressed  in  terms of t h e   r o o t s  pi of the  polynomial  equation 

n  n 
by En = kl& + k2P2 3 3 + k pn ( s l i g h t l y   m o d i f i e d   i n   t h e   c a s e  of a mul t ip l e  

r o o t ) ,  where the   k .   a r e   cons t an t s .   Equa t ion   (12 )   has   cons t an t   coe f f i c i en t s  

as required  provided  the d a r e   c o n s t a n t  as wel l  as x. The di a r e   c o n s t a n t  

i n   t h e   c a s e  of  f ixed  mesh. I n   t h e   v a r i a b l e  mesh case ,  it i s  t h i s   i n v e s t i -  

ga to r ' s   expe r i ence   t ha t   t he  di vary  very  s lowly when the   i n t eg ra t ion  i s  

s t a b i l i f y   l i m i t e d .   T h i s  i s  due t o  t h e   f a c t   t h a t   t h e   r a t i o  Q! of mesh in-  

crements   f rom  s tep  to   s tep  remains  near ly   constant ,  and t h e  d .  a r e  con- 

s t a n t  when t h e  mesh parameters Cy, 8 ,  and Y are   cons tan t .  (When Q is con- 

s t a n t ,  B and y a r e   t h e   c o n s t a n t s  + Q2 and OI + $2 + .?, respectively.) 
Thus it is reasonable to add the assumption of constant di, for the pur- 

poses of the s tab i l i ty  analysis only, slld in view of the abave remrks it 
becan86 convenient to   t rea t   nmer ica l   s tab i l i ty  i t a  terms of the two parametere 
X srd a. 

1 

i 

1 

11 

I 



When x = 0, the fundamental root of the characteristic equation (13) is 
unity and the others are zero. When x # 0, one or both of the latter 
roots may become larger in modulus than the fundamental root. This is 

a condition of relative numerical instability [63, whereas absolute 
numerical instability occurs whenever  any root is  greater than  one  in 

modulus or when a root of  unit modulus is a multiple root. Applying 
these conditions as definitions, regions of both relative and absolute 

stability have  been computed by tracking the roota of (13). These re- 

gions are shown in Fig. 1 in terms of the parameters x and Q. Although 
it is interesting to note the behavior for  very large and small cy, in 
practice Q! actually remains fairly close to unity. Also shown in 

Fig. 1 are the curves x d-l = k1, which indicate the region for which 

the corrector iterations converge, and within which the stability regions 

have me an  ing . 

4 0  mIcAz, S'l!ABILITY FOR SYS- OF D-IAL EWTICBJS. 
The varisble mesh formulas are applicable for systems of differential 

equations of the f o m  

In considering nunerical stability for this case, equatlon (12) for the 
propagated error is replaced by 

where Tn denotes the vector with components ~(~'(x~) - yn (i) . I is the 
identity matrix and G is the Jacobian  matrix  with  elements G = aFi/ay (J) 
which are assumed constant, aa in the case of a single equation. A cursory 
analysis of numerical stability is available through consideration of a 
characteristic polynomial corresponding to  a  majorization of equation (15). 
However, a more detailed approach involving the eigenvalues of the matrix  G 

ha8 been pursued in the present study. 

ij 
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Pre-multiplying  equation (15) by a matrix T, representing a nonsingular 
linear  transformation such that V.3T-l = J is  in canonical form, gives 

- 
where = Ten. The diagonal  elements of J are the  eigenvalues of G, 
and if  these  are distinct, all  the  off  diagonal elements o f  J are zero .  

In  this  case  the  system of difference  equations for the  propagated  errors 

becomes  uncoupled  in  passing from (15) to (16), and  the  relevant  character- 

istic  polynomial  equation is  again given  by (IS), with x taking on  the 
values hJ If the  eigenvalues  of G are  not  distinct, the  analysis  is 
more complicated,  as indicated  in [ll, but  the results are essentially 

the s m c .  In either  case,  however,  Fig. 1  is  inadequate  because  some 

of  the Jii may have nonzero imaginary  parts. 

- 

ii ' 

It  is easy to show that  the zeros of any polynomial whose coefficients 

are  themselves  polynomials  in  a  complex  variable  are  the  complex  con- 
jugates of the zeros of the  same  polynomial with x replaced by its  con- 
jugat.e. Thus we need  only  track  the  roots  of (13) f o r  values of k with 
positive  imaginary parts, the  regions o f  numerical stability in  the  lower 

half of  the hplane then  being  given  by  symmetry. 

The  problem of determining regions o f  stability  for  fixed Q! has thupl 

been  reduced  to  computing  the roots o f  (13) for incremental  values of x 
in  the  upper  half hplane and deciding at  each point whether or not  we 
have  stability  according  to  some  appropriate definition involving  the 

roots.  We will limit  ourselves  to  relative  stability. 

Choosing  a  definition  of  relative  numerical Stability presents an  in- 

teresting  situation. (We ignored  this situation  in the  case of a single 
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differential  equation. It was present but. rather inconsequential.) One 

would  like a definition which  not only provides a unique  decision  regard- 
ing stability at each  point  but  also  reflects one's intuitive notions of 
relative  stability. For example, it. is distressing  to  find  it  possible 

to  pass  repeakedly  back  and forth from stability t o  instability as 1x1 
increases  along  some  specified  path. Two definitions were considered  in 
the  present  study--one  an  extension  of  the Ralston definition  used above 
for single  differential  equations,  and  the  other a definition  used by 
Crane and Klopfenstein [7; and also by Krogh [SI. Both definitions  lead 
to  meaningless  relative  stability  boundaries for fairly large complex x. 
As a  practical matter, however, it  should be  reuembered  that  numerical 
stability  is  irrelevant for sufficiently  large x since  either  the  trunca- 
tion  error  becomes  prohibitively  large o r  convergence  of  the  corrector 

iterations is not  obtained. 

The  generalization  of  Ralston's  definit.ion  to apply to  systems was con- 
sidered by Lea r93 .  Lea defined  the  principal  root  of  the  characteristic 
polynomial  equation  as  the  continuous  function  of  h  satisfying  the  poly- 
nomial  equation  and  taking  on  the  value unity at h = 0. All others were 
called extraneous. Actually however, this  "definition" fails to  distin- 
guish  between  the  principal  and  extraneous  roots  because  two of them may 
satisfy  the  requirements  of  the  principal root. The  following  example 
illustrates  this  deficiency  and further illustrates  the  inability to de- 
cide  between stability and  instability for a particular  value of  x. 

For Q E 1  (fixed step size)  the  three  roots  of  equation (13) are shown 
in  the  p-plane  (Fig. 2 ) .  The values  corresponding to = (-1,2) are  in- 
dicated by circles. Moving from the  origin  in  the hplane counterclock- 
wise around  the  rectangle to (-1,2), the roots proceed in the p-plane 
from  the points (l,O), ( O , O ) ,  and (0,O) to the  circled  points  along the 
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A - plane 

-1 

P - p- 

Figure 2 Example of  AmbQuity in Relative stability Definition 



paths indicated by the  arrows. The point x = (-1,2) appears  stable 

according  to  the Lea definition  since  the root  which atarted at (1 , O )  

is  the  largest. However, as we continue  around  the  rectangle  in Lplane 
we see  upon  returning  to  the  origin  that  the  root which started at (1 , O )  

is now at ( O , o ) ,  while  one of the roots  which started at ( 0 , O )  is now  at 
(1,O). In other  words, if we had  proceeded  clockwise, in the hplane , the 
point x = (-1,2) would appear unstable. 

This problem does  not develop with small x; that is,  when  we consider a 
somewhat smaller rectangle  the roots return  to  their  starting  points. 
On the other  hand, the  problem  does  preclude  a  complete  partitioning of 

the hplane into  meaningful  regions of stability and instability  by this 
procedure. 

The  alternate  definition  does  uniquely  partition  the Lplane into  regions 
of stability and instability, but  these  regions  are not acceptable for 
large x . The problem here, although not recognized  in  either [7 J or 
[8], is  the  one  mentioned  earlier of alternating  between  stability and 
instability  as  increases. According to  this  definition,  a  method  is 
relatively  stable  if  the  modulus of each of  the roots, other  than  the 
one  nearest exp(x), is less  than  or  equal  to exp[F&(x)], with equality 
permitted for simple  roots  only. 

To  illustrate  the  problem with this  definition we  note  first that for 

CY = 1, the  roots of equation (13) go from  the  "aource points, " (1 , O ) ,  

( 0 , O )  and ( O , O ) ,  to  the  "sink points,'' approximately (-2.37,0.0), 
(0.13,-0.17), and (0.13,+0.17), not  necessarily respectively, as x goes 
from  the  origin  to  infinity  along any path  in  the hplane. Consider  now, 
for  example, x moving  along  the  real axis  to ( 0 . 5 , O . O )  and then  vertically 
to  infinity. For the  vertical portion, exp(x) traverses again and again 
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t h e   c i r c l e  i n  the  p-plane wi th   r ad ius  erp(0.5) and   cen ter  (0,O). Event- 

u a l l y ,  when t h e   t h r e e   r o o t s   a r e   s u f f i c i e n t l y   c l o s e   t o   t h e i r   s i n k   p o i n t s ,  

t hey   a r e   each   nea res t  exp(A) f o r  a port ion  of   each  cycle  of exp(A).  Thus 

b y   d e f i n i t i o n   t h e  method i s  r e l a t i v e l y   s t a b l e   f o r   t h e   p o r k i o n  of each 

cyc le  when the   roo t   nea r  (-2.37,O.O) i s  t h e   c l o s e s t   t o   e x p ( 1 )   a n d   u n s t a b l e  

otherwise.  In  t h i s  manner, on  t h e   v e r t i c a l   l i n e  &(A) = 0.5, we have 

s t a b i l i t y  up t o  Im@) = 3.0, t h e n   i n s t a b i l i t y  t o  about 8.3, s t a b i l i t y  

aga in   to   about  9.9, e t , c .  

S ince   the   second  def in i t ion   has   the   p rac t ica l   advantage   tha t  i t s  appl ica-  

t i o n  i s  independent   o f   pa th   in   the   hp lane ,  and s ince  the  problem j u s t  

no ted   apparent ly   occurs   on ly   for   excess ive ly   l a rge  x, t h e r e  i s  no p r a c t i c a l  

d i f f i c u l t y   i n  i t s  usage: one s imply   ignores   s tab le   reg ions   ly ing   "outs ide"  

uns tab le   reg ions .  

Consequent ly   the  resul ts  shown i n   F i g .  3 were  obtained  by  applying  the 

second  def in i t ion .  The two d e f i n i t i o n s   g i v e   v e r y  similar r e s u l t s   f o r  

small x and  reasonable   va lues  of CY, say  1/4 < Q < 4. 

Also shown i n   F ig .  3 a re   t he  curves I h I = 1. I n  a manner  analogous 

t o  the   case  of a s i n g l e   d i f f e r e n t i a l   e q u a t i o n ,  i t  can  be shown t h a t   f o r  

the  dominating  eigenvalue of the  Jacobian  matr ix  of the  system,  the  con- 

d i t i o n  I " d  - I < 1 i s  necessary  for   convergence of t h e   c o r r e c t o r   i t e r a t i o n s .  

-1 

5 . CRITERIA FOR  SELECTING MESH INCRENENTS. An a l g o r i t h m   f o r   t h e  

so lu t ion  of d i f f e r e n t i a l   e q u a t i o n s   b y   v a r i a b l e  mesh procedures would  be 

incomplete   without   reasonably  sound,   general   purpose  cr i ter ia   for   deciding 

what s t e p   s i z e  t o  use a t  each   s tep  of t h e   i n t e g r a t i o n .  The main  informa- 

t i o n   r e q u i r e d   f o r   s p e c i f y i n g   e f f e c t i v e   c r i t e r i a  was developed  in   the  pre-  

v ious   s ec t ions .  In essence ,   the  mesh select ion  procedure  discussed  below 
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Figure 3 .  Regions of Relative S t a b i l i t y  and Convergence of Corrector 
c Iterations of Variable Mesh Method for Systems of Differential Equations 



represents an a t t q t  t o  choore each step s ize  just small enough so that 
the following three criterla are satisfied in the nmerical  solution of 
single diiferentlal equstlons: 

a )  The r e l a t i v e   t r u n c a t i o n   e r r o r  must  remain  within a prescr ibed  

to l e rance  6. 

b)  The condi t ion  for   convergence of t h e   c o r r e c t o r   i t e r a t i o n s  mus t  

be s a t i s f i e d .  

c )  The method must  p o s s e s s   r e l a t i v e   n u m e r i c a l   s t a b i l i t y .  

Let and c denote   the   p red ic ted   and   f ina l   cor rec ted   approximat ions  

f o r  Y ( X ~ + ~ ) .  Let H = - x be t h e   s t e p   s i z e   t o   b e   u s e d   i n  com- 

pu t ing   t he   so lu t ion  a t  x ~ + ~ ,  and l e t  01 be t h e  new value of CY aa  determined 

b y   t h e   t r u n c a t i o n   e r r o r   c r i t e r i o n   i n  a manner  described  below.  (Thus 

from t h e   t r u n c a t i o n   e r r o r   c r i t e r i o n  we w i l l  g e t  H = h/a .) 

n +1 

n +1 

t 

t 

Us ing   t he   t runca t ion   e r ro r   t e rms   fo r   t he   p red ic to r  and corrector   formulas  

obta ined   in   Sec t ion  2, we can   e l imina te   t he   f ac to r  h y: and obtain,   through 

f i f t h   o r d e r   i n   h ,   t h e   e q u a t i o n  

5 
5! 

where P and C are given by equat ions n n 

‘n 

( 9 )  and ( l o ) ,  r e s p e c t i v e l y .  

We want t o   f i n d  cy s u c h   t h a t   t h e   r e l a t i v e   e r r o r   i n  c i s  6, that  i s ,  t n +2 

In p r a c t i c e  we a c t u a l l y   s e t  
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giving 

at 
= 

If cWl I 0, absolute rather thsn relative truncation error m u s t  be 
considered, the allowable  tolerance depellning on the range of the machine. 

Criteria b and  c above are combined  to  produce a eingle value aC for the 
meah parameter or at the new step. To thie end, we solve H = h/aC simul- 
taneously with  expreaeions approximating  the boundary of the intereection 

of the regions of relative  stability and iteration  convergence shown in 
Fig. 1. For thie  purpoee  the  following  erpreeeiona  have  been  found  to fit 
the  boundary data accurately: 

f < 0 :  0 < 01, < .25: Hf = -3.!&tC 5/2 Y  Y 

.25 s a c  < 1.0: Hf = .17 - l.O%c 
Y 

1.0 < -: FLf = l.08/ac - 2, 
Y 

f > 0 :  ac < .25: not permitted (see Fig. 1) 
Y 

.25 sac 1.0: Hf = [2 + (1 - Ctc) 7/41 
Y 3  

l . o < a c  <":\ Hf = 2 
Y 

An approximation for f can be  obtained  from computation8 from  the  com- 
pleted  step: 

Y 
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It has   been   de te rmined   (by   ac t ,ua l   ca lcu la t ions)   tha t   wi th  Q!: = hfy/3, 

a:’) i s  a lways   cor rec t  t o  w i t h i n  two uni t s   in   the   second  dec imal   p lace .  

Thus Q! is computed according t o  the   fo l lowing   s imul taneous   so lu t ions  o f  

each of  the   above  equat ions  with  the  equat ion H = h/ttc: 

0) 

C 

- OJ < hf 2 - .92: CY = (1.08 - hfy)/2 
Y C 

-.92 < hf - .025: ac = ( .17 +./.03 - 4.36hf  )/2.18 
Y Y 

-.O25 < hf < 0: = (-hf/3.  2) 2 / 7  
Y % 

0 ’ hf ’ .875: ac = .25 Y 

.875 < hfy < 8/3: aC = 3hf/[8 + 4(1 - hf/3)7’4] 

8/3 5 hfy  < m: cyc = (hfy - 2/3)/2. 

The  new step  size H can then be taken as h/a, where a = max(at, Qc) . 
Although this policy has proven satisfactory in practice, it is pOS6ible 
that it could produce a new step  size which is  substantially  different 
from the  preceding one (but  not  likely because of the contracting  charsc- 
t e r  of the fifth  root) ,  and this i n  turn could result in a subsequent 
loss of accuracy.  Therefore  the writer recarmends the  addition of a 
precautionary  restriction, such as 2/3 5 a < 3/2, using a smaller  or 
larger  interval depending on the requirements of the  particular problem 
be- Solved. 
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Experience Indicates that when even only a moderate degree of accuracy 
is required, the numerical solution of most  problems is  limited by the 
truncation  rather  than  the  stability  (or convergence of the  iterations) 
criterion. Of course it may be that the  truncation  criterion is limit- 

ing the  step  size by detecting  nunerical  instability of the predictor; 
we know for  example that the nlonerical integration of stiff equations 
i s  limited by s tabi l i ty .  A t  any rate, when  we begin t o  examine mesh 
criteria  for  large systems of differential  equations, it is  erpecially 
fortuitous  that  satisfying  the  truncation  error  criterion  usually  pre- 
cludes instability, because i n  this case the  truncation  criterion is the 
only one  which can be feasibly  incorporated  into  the  algorithm . For 
large systems the amount of  caqputing time required to  evaluate  either 
the Jacobian m t r i x  G or its eigenvalues a t  each step would usually 
be prohibitive. O f  course for  certain smal l  systems it may not be pro- 
hibitive, and then  the  results shown in Fig. 3 can be incorporated in a 
manner analogous to   that  given above for  obtaining ac in the case of a 

single  differential  equation. This procedure has proved successful  for 
selected systems although it did not a l t e r  the mesh increments substan- 

t i a l l y  from those  selected by the  truncation  criterion alone when 
reasonably s m a l l  values of 6 were  used in the latter  cri terion. 

The  mesh selection procedure reconmended for  most large systems thus con- 
sists of u s ~  only the  truncation  error  criterion. Values of a: are 
canputed f r a n  equation (17) for each caqponent  of the system, and then 
a is  se t  equal to  the  f if th  root of the  largest of these. 

6 NUMERICAL 'IIESTING AIiD COMPARISON W T I R  CXCHER MEmOE . The vari- 
able mesh multistep method has been tested by applying it to  several 
single  differential  equations and t o  several systems of differential  
equations. This  testing has given a fa i r ly  thorough demonetration of 
the  effectiveness and re l iab i l i ty  of the  algorithm. One system of 
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substantial importance for which the variable mesh approach proved 
especially  effective was the problem of heat   t ransfer   to  a swercr l t ica l  
fluid with variable  physical  properties and ful ly  developed turbulent 
flow in a smooth tube [l]. Another system, discussed i n  [lo?, was a 
stochastic model of enzymatically  controlled  cooperative u n w i n d i n g  and 
template replication of biological mscromolecules . Due to  the  canpli- 
cated mathematical fornulation of these problems, they WU not be given 
in deta i l  here . However, several   shpler  test problems are listed in 

Table 1. 

Most of these test problems  were selected because of their inherent poten- 
tial, both in  the behavior of the solution8 and in the behavior of the 
partlal derivatives of the right hand sides with respect t o  the dependent 
variables,  for producing  nwnerical diff icul t ies  . Sane are par t icukrly 
suited to  a variable mesh treatment while others, Nos . 5, 6, 10, and ll, 
can be sol- efficiently w i t h  constant mesh increments. In the  la t ter  
cases it is Important t o  note that the  accuracy  obtalned by the variable 
mesh method was about  the same as that obtained using canstant increments 
with the same nmber of steps . 'Ibis indicates that the variable mesh pro- 
cedures do not have a degradiag effect  when they are used unnecessarily. 

Each equation was solved on the IBM System using sirrgle precision 
s t a r t i n g  values and double precision  floating  point  aperatlaas  to advance 

the solution. Values of 6, the  target  relative  truncation  error, 
ranging fKIlr lo4 t o  10-l were used for each equation. m e  accuracy 
obtalned was roughly proportionate t o  the values of 8 specified. It 
was noted that the step  lengths were limited almost entirely by the trun- 
cation  error  for  the  smaller  values of 6 with the  stability/cawergence 
criterion becoming of increasing importance w i t h  iacreaslng 8 .  
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Problem 

1 

2 

3 
4 

5 
6 
7 

8 

9 

10 

11 

12 

TABLE 1 

PROBLEMS USED TO TEST VARIABLE MESH METEIOD 

Differential 
Equation(s) 

y’ = 4bory 

yl  = (2& 
y’ = y/x - (l/x)coe(l/x 
Y = -e&) Y 

Y’ = Y  
Y; - -Y/. 
Y; = Y(Y/2+1) 

y: = y2/2-40z 

y; = -2(Y+z) 

y: = ~rp(-x)-loOz 

y; = -z/x 

I 

I 
Y = -Y 

2 - - a  

a = y  

a = y  

1; = y  

2 = -100 a 
4 

a = y  

Integration 
Interval 

-1 s x  Sl 
1 % * 1O2O 
-1 s x 5 -.01 

0 s x  s5 
0 s x   s 1 0  

0 5, s 1 0  

0 * x  s 5  

0 S I  * 5  

-1 s x  Sl 

0 x 5; 100 

o s x 5 1.5 

-1 5 x 5 -.01 



Some of these problems, 1, 9, and 12, w e r e  used in ccmparing the new 
algorithm w i t h  other  fourth  order numerical methods which also permit 
sane variabil i ty in the mesh increments . The other methods  used  were 
the standard fourth  order Runge-Kutta msthod, the Nordsieck method, and 
the  basic AA-Bashforth/Adams-Moulton method, allowing doubling and 
halving of the i n c m n t s  with the l a t t e r .  AB indicated below, the new 
method proved superior to  the  other methods for  these problems. 

Since  the Rtmge-Kutta  method requires  four  derivative  evaluations per 
step while the others were used with only two evaluations per step, half 

86 mBDy Steps were Used With the Runge-Kutta method 88 With the O t h e r  

three. For this method the  step  sizes w e r e  obtained by linear Interpola- 

t ion of an input table, re-apply- the method with  different tables 
until no improvement could be obtained. 

!Che Nordsieck method permits  increasing  (or  decreasing)  the step size  by 
a factor 8 (or l/@). The test problems used in the present  study were 
solved with 6 2, the  value emphasized in [3] where the symbol "B" I s  

used for this factor, and also with s e e r  values t o  permit. more gradual 
varying of the increments. In  addition, Nordsieck's interval control 
mechanism requires a parameter "err used in a m e r  t o  inply a target 
error emem For each value of 8, the problems used here were solved 
w i t h  several  values of e, seeking one  which produced the number  of steps 
coannensurate with  the  nmber used by the  other methods.  Hawever for 
6 P 2, the Nordsieck method used too mny steps even when e was reduced 
t o  unity. ( In  a c t ,  considerable difficulty was encountered in t rying  to  
locate values of e which w e r e  usable in t h i s  Bense. Successful choices 
are indicated in Table 2 .) It is also noted here that it was not necbs- 
s a 4   t o  use Nordsieck's s t a r t i n g  procedure for  the test problems since 
a l l  the  required initis1 information was available. 
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For Problem 1, the  absolute value of the  relative error in the solution 
obtained by each of the four methods is shown i n  Fig 4. For th i s  problem, 
the  entries in Table 2 are the  areas under the curves of Fig. 4. For the 
other two problems, the  entries in Table 2 reflect  alternative measures 
of relative  error which are more appropriate  for  the numerical solutions 
obtained for those two systems of equations As can be seen from the 
table, the n e w  variable mesh m e t h o d  gave the best   perfomme; and the 
basic Adams method,  augmented with interpolation procedures t o  permit 

doubling snd halving, also did considerably better than the  other two 
methods . 

TABU 2 

COMPARISON OF RELATIVE ERROR 

2 . 0  x 
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7. EXTENSION OF IIHE METBOD FOR STIFF EQUATIONS . In  the caqputetional 
work carried out w i t h  regard to  the  basic  variable mesh method, it was 

observed that the mesh increments are usually limited by the truncation 
error criterion. But numerical s tab i l i ty  may be the limiting mechanism in 
the case of large  Lipschitz  constants. This  may arise, for  example, in 

studies of mechanical, electrical, chemical, or  biological  processes where 
a system of differential  equrrtions is used t o  represent the simultaneous 
relaxation of the various canponents at greatly  different rates. 

Several investigators have considered  the problem of stabil i ty  l imited  inte- 
gration. Crane and Klopfenstin [71 and Krogh C81 have attacked the problem 
through optimum choice of the  coefficients In the  "predictor" of s t a d a r d  

predictor-corrector  type methods. They claim slight impravement for  sta- 
bil i ty  l imited problems, but this i s  a t  the expense of substantial degrada- 
tion  for  other problems. Transfarmation methods have also been proposed, 
but these are time consuming and d i f f icu l t  to  apply in general. A more 
prmislng approach appears t o  be that followed by Treanor [113 where the 
method is designed from the  outset with this type of problem in m i n d .  In 
the  following paregraphs  an algorithm is presented which is simUar t o  that 
of Treanor but has the advantage of relying on the  variable mesh, multistep 
framework rather  than  the Runge-Kutta  framework  used  by Treanor. 

The central idea is to  extend the method  by incluiing  explicit dependence on 
the dependent variable as well as on the Independent variable in the l o c a l  
approximating function  for the derivative. In  particular, let  us assume 
that f can be approximated in a neighborhood of (xn, yn ) as  linear in 
y and cubic in x: 

w h e r e  the coefficients P, A, B, C, D are t o  be determined. 
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The equation dy/dx = k can be integrated in  closed form from xn t o  n 
X n+l’ using the  integrating  factor ea and integration by par t s ,   to  

give a fornula  for computing yn+l. The result i s  

Yn+l = yn + A q  + (h - q.) (B/P - C/P2 + D/P3) 

+ h2( C - D/P)  /2P + h3 D/6P , 

where q = (1 - e-Ph) /P. 

It is the presence  of the  coefficient P that provides  the  great advantage 

w i t h  regard t o  numerical s tabi l i ty .  If the usual type of analysis of 

numerical s t ab i l i t y  is applied t o  this  method, numerical s tab i l i ty  I s  in- 

dicated for   arbi t rar i ly   large I af/% I . 

If P is put equal to  zero in (18), then  the above formula for  yn+l is 

replaced by 

2 3 4 yn+l = yn + A h  + Bh /2! + Ch / 3 !  + Dh /4! , 

which can be sham t o  be identical with the  basic variable mesh mthod, 

provided the  coefficients  are determined appropriately, as follows: The 

five  coefficients in (1) are determined by equating kn t o  five previously 

computed values  of f. Coefficients  for a predictor formuLa are found by 

matching a t  the  points (xn - i, c n-i 1, i = 0, 1, 2, 3, and a t  (xn, P,), 

where  p denotes  the  predicted  value of y(xn) and cn denotes the 

corrected value. For a corrector,  the  point ( x ~ + ~ ,  P , ~  ) is used instead 
n 

of (x n-3’ c n-3 1. 
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If the Aurction f I s  actually a t  most a linear function of y plus a 

cubic  function of x, the formulas give  the  exact value of  y(xn+,) . How- 

ever no expression for  the truncation  error is  available in general. 

A ccrqputer  program was written t o   t e s t  t h i s  method with selected  differential 

equations. The results of th i s  testing  are  typified by the following example: 

The system of equations y' = - 2xy/z ,   z '  = - 2xz, with initial conditions 

y(0) = e , z ( 0 )  = 1, was solved by both the basic method am3 the extended 

method i n  the interval 0 x S 2 . 2 .  This  s y s t e m  is not stiff near x P 0, 

but becanes stiff for  larger  x. The exact  solution i s  y = eq[-  exp(x2) 3, 
z P exp( - x z )  . Using the truncation  criterion  described  earlier  (with 

8 I .OOO1) for  mesh selection,  accurate  solutions were obtained by both 

methods for  the dominant component z while the  solutions  for y remained 

Eitable and reasonable (< .OB error  for z and < 105 error  for y) . The 

basic method required 394 steps compared t o  270 for  the extended method. 
As expected, all the advantage provided by the extended m e t h o d  came i n  the 

latter stages of the  integratian. 

-1 

8.  APPLICATION TO PARTIAL DIFFERENTIAt EQUATIONS. Sane consideration 

has been given t o  apply- the variable mesh multistep approach t o  partial 

differential  equations. To i l lus t ra te  one stralght-forward way of accm- 

plishing this, consider a method which, when applied t o  the sinTple equatlon 

yt = A &, reduces t o  the formula 

31 



where the second difference  operator D2 is def bed by 

With the di defined by ( 8 ) ,  (19) can be regarded as an  Interpretation of 

(7) . Equation (13) determines the numerical stabil i ty,  and as can  be seen 

from Figure 1, formula (7) i s  absolutely s-ble for 

- 3 s o ,  ( 2 0 )  

for the case a = 1, ij = 2, Y = 3. 

Now l e t  E = u( tn, xj) - u n, 0 It follows that 
n, j 

Since (19) is fourth order  accurate in time and  second in space, we obtain 

Now if we l e t  

we deduce f r o m  (20) that formula (19) is stable  for 
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for the case = 1, B - 2, Y - 3. 

The above result Indicates that this multistep approach has better s tab i l i ty  

than  the  well bown forward difference method (which requires A At/&' 5 1/2), 

allowing a 50$ increase in the step size A t  for given Ax. Furthermore, 

the forrard  difference mthod is only first order accurate ia the and second 

in space. 

In practice, numerical s tab i l i ty  is usually of more concern than local 

accuracy when solving  equations of the type  considered.  Since methods are 

presently available which permit arbitrary mesh rstios, it I s  felt that a 

more promising alternative  to the above is t o  consider combining the varia- 

ble mesh approach with such unconditionally stable methods. Methods w h i c h  

appear t o  be particularly good candidates for  t h i s  purpose are  the three- 

time-level methods (see e .g . 1121) which also permit accurate handling of non- 

l inear i t ies  in the  dlfferentlal  equations. A program along these lines I s  

plnnned 
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